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Abstract 
A brain tumour is an uncontrollable cell proliferation within the brain, and they are either benign or                 
malignant. They can be detected through magnetic resonance imaging, however, this technique cannot be              
used for smaller tumours. In this project, we aim to develop machine learning classification models that                
can detect the presence of brain tumours given an MRI scan. The models include logistic regression,                
SVMs, Naive Bayes classifiers, decision trees, AdaBoost, and convolutional neural networks. 
 

1 Introduction 
Brain tumours are detected by analysing MRI scans. Each image needs to be individually analysed by                
oncologists or neurologists. This is an expensive, time-consuming process with a chance of human error.               
In the United States alone, over 80,000 brain tumours are diagnosed annually [1], out of which almost                 
24,000 are malignant [2].  
Brain tumours have an overall five-year survival rate of only 36% [2]. However, early detection and                
diagnosis have been linked with a higher chance of survival [3]. Due to the advancements made in the                  
field of computer vision and machine learning, it is now possible to build a system that can extract                  
features from MRI scans, and predict whether a patient has a tumour or not.  
The goal of our project is to build and compare a set of classifiers that can serve as an inexpensive, rapid,                     
and accurate way to detect the presence of a  brain tumour, hence increasing the likelihood of survival.  
 

2 Technical Approach 
To achieve our goal, we used various supervised learning classification techniques: 

1. Logistic regression 
2. Support vector machines (RBF kernel, sigmoid kernel, and linear kernel) 
3. Decision trees 
4. Naive Bayes classifiers 
5. Adaptive Boosting 
6. Convolutional neural networks 

The reasons we added a CNN to our set of classifiers are: 
1. A CNN convolves learned features with input data and uses 2D convolutional layers [4], hence               

making it a suitable model to classify MRI scans 
2. CNNs need relatively less data preprocessing 
3. CNNs work by extracting features from images, removing the need for a feature extraction              

pipeline, hence they are also independent of prior knowledge in feature design 
To judge our models, we used the following scoring metrics: 

1. Accuracy: A measure of the number of correctly predicted data points out of all data points. 
ccuracy  A =  T P  + T N

T P  + T N  + F P  + F N  
where TP is the number of true positives, TN is the number of true negatives, FP is the number of false 

positives, and FN is the number of false negatives 



2. Sensitivity: Sensitivity is a measure of the true positive rate. For a medical test such as diagnosing                 
a tumour, it refers to the test’s ability to correctly detect the patients who have that condition.                 
Therefore, it is a more important metric than accuracy for our purpose. 

ensitivity S =  T P
T P  + F N  

3. ROC Curves and AUC: An ROC curve is a graph showing the performance of a classifier at all                  
classification thresholds. It is a plot of the true positive rate (sensitivity) versus the false positive                
rate. Area Under the Curve (AUC) is a measure of the 2D area under the ROC curve. This value                   
lies in the range [0, 1]. Scores closer to 1 are an indication of better prediction performance. 

 

3 Experimental Results 

3.1 Dataset 
The data used to train our models consisted of 3,762 samples, each with 13 features and a binary label.  
The samples were well balanced, and had a 55-45 distribution (55% of the samples were class 0 i.e. not a                    
tumour, and 45% were class 1 i.e. a tumour is present). 

  
Figure 1: Label Distribution 

 
The following features were present in the dataset: 

1. Mean: The contribution of individual pixel intensity for the entire image 
2. Variance: How each pixel varies from neighbouring pixels 
3. Standard deviation: The deviation of measured values 
4. Skewness: The measure of the lack of symmetry 
5. Kurtosis: The peakedness of a distribution 
6. Contrast: The difference in colour across the image 
7. Energy: The rate of change of the colour of pixels over local areas 
8. ASM (Angular Second Moment): The textural uniformity of an image 
9. Entropy: The statistical measure of randomness 
10. Homogeneity: How similar certain pixels of the image are 
11. Dissimilarity: The numerical measure of how different two data objects are 
12. Correlation: The result of moving a mask over the image and computing the sum of products at                 

each location 
13. Coarseness: The roughness of a texture 

All features are continuous. Also included in the dataset were MRI scans corresponding to each sample. 



 
Figure 2: MRI scans of brains. Left: no tumour; Right: tumour present  

 
3.2 Preprocessing and Exploratory Data Analysis 
Before we could build models, we needed to preprocess our data to ensure that it can be used for machine                    
learning. As a part of the preprocessing, we normalised the data so that each feature was on the same                   
scale. This was done to ensure that no feature creates a bias in the models due to excessively large or                    
small values. Using min-max normalisation, each feature was re-scaled to range from [0, 1]. 
After preprocessing the data, we conducted an exploratory data analysis with the following steps: 

1. Feature value distributions: Plotting the overall distributions of each feature 
2. Correlation analysis: To analyse the relationship between each pair of features 
3. Class-wise distributions and density estimates: Plotting the class-wise distributions of each           

feature along with the kernel density estimates (KDE) for each distribution 

 
Figure 3: Distribution for Energy. Left: class-wise distribution with KDE; Right: overall distribution 

 
3.3 Basic Models 
For our first set of models, we used the following classifiers: 

● Logistic regression 
● SVMs: RBF and linear kernels 
● Naive Bayes classifier 

We split our dataset into a training set and a test set using an 80-20 split, and then trained each model                     
using the training set. Using the test set, we obtained predictions and determined the accuracy of each                 
model. Although each model had an accuracy of over 99%, we noted the following: 

1. The models could be overfit 
2. There might have been an imbalance in the split of the samples with and without tumours 



3. We didn’t use all the data available to us for training and testing, the 80% used for training was                   
never used for testing, and similarly for the test set 

As a result of these observations, we proposed the following solutions: 
1. Add the following classifiers to our system: SVM with a sigmoid kernel, decision trees with Gini                

impurity, adaptive boosting models, and a convolutional neural network 
2. Adjust the train/test split 
3. Implement cross-validation 
4. Implement feature selection 
5. Hyperparameter tuning: Adjust hyperparameters such as depth of decision trees and number of             

estimators in adaptive boosting 
 
3.4 The Effect of the Size of the Training and Test Sets 
To observe the effect of the train/test split on each model, we trained and tested each classifier after                  
adjusting the split size, and found the best performing model. 
Starting from a test set size of 5% (i.e. training set size of 95%), we increased the test set size to 95% over                       
20 intervals (5%, 10%, … 90%, 95%) and measured the accuracy and sensitivity. We also set a threshold                  
of 45%. Using this threshold, we found the best performing model without a restriction on the test set                  
size, and with a restriction where test set size must be less than the threshold. This is because we cannot                    
realistically use a model which has been trained on less than 50% of the data available. 
The best model was the decision tree (depth = 15), with sensitivity and accuracy of 98.0% and 98.339%                  
respectively, with a train/test split of 76% and 24%. 

 
Figure 4: Decision Tree (depth = 15) Performance when Adjusting Train/Test Split 

 

3.5 Implementing Cross-validation and Hyperparameter Tuning 
By using cross-validation, we can use all the data available for training and testing. We implemented                
10-fold cross-validation without repetition, and with 3 repetitions on our set of models. 
Apart from letting us use all the data available, the other main advantages of cross-validation are that it                  
reduces overfitting, and allows us to tune hyperparameters such as decision tree depth [5].  
From Section 3.4 onwards, we have specifically used decision trees of depths 6 and 15. These were                 
obtained by changing the depth parameter of the decision tree and comparing their performances during               
cross-validation. These trees had the best performance in terms of sensitivity and accuracy (Figure 5). 



 
Figure 5: 10-fold Cross-validation Sensitivity vs Decision Tree Depth 

 
The best model was a decision tree (depth = 15), with a sensitivity of 97.68%, and accuracy of 98.33% 
 
3.6 Implementing Feature Selection 
Since all 13 features are continuous, we used ANOVA F-value to get the 6 best features (~ 50% of the                    
features). The 6 best features were energy, homogeneity, entropy, ASM, dissimilarity, and skewness. 
We then applied 5-fold cross-validation to the models and plotted the ROC curve. 
The best model was still a decision tree (depth = 15), however, its sensitivity and accuracy fell to 96.89%                   
and 97.39% respectively, with a mean ROC AUC of 0.973 ± 0.003. Hence, reducing the number of                 
features doesn’t lead to better performance for our data and classifiers. 

 
Figure 6: ROC Curve for Decision Tree (depth = 15) with 6-best Feature Selection and 5-fold Cross-validation 

 
3.7 Adaptive Boosting 
AdaBoost is a boosting technique that is used as an ensemble method in machine learning. A classifier is                  
fit on the data, after which additional copies of the same classifier are fit on the same dataset with the                    
weights of incorrectly classified samples adjusted such that the subsequent classifiers focus more on the               
harder cases. The SAMME àlgorithm is used for boosting [6]. 
The two primary hyperparameters in AdaBoost are the number of estimators, and the ensemble learner               
used. Our classifier uses a decision tree as the ensemble learner. The performance of AdaBoost was                
compared for models with a varying number of estimators and decision tree ensemble depths. 
3.7.1 AdaBoost and Cross-validation 
Similar to what was done in Section 3.5 with the basic models, we implemented cross-validation (without                
repetition, and with 3 repetitions) for our default AdaBoost model (50 decision stump i.e. depth = 1                 



estimators). Cross-validation with repetition led to better performance, with a sensitivity of 97.9%, and              
accuracy of 98.75%. 
3.7.2 AdaBoost and Feature Selection 
Using the same default model described in Section 3.7.1, we trained our model using the 6 best features                  
and 5-fold cross-validation (Section 3.6). As earlier, the performance dropped, resulting in a sensitivity of               
96.84%, accuracy of 97.89%, and mean ROC AUC of 0.990 ± 0.001.  
3.7.3 Changing the Number of Estimators 
Sections 3.7.1 and 3.7.2 used the default AdaBoost model. The first hyperparameter we adjusted to               
improve performance was the number of estimators i.e. number of decision trees/stumps. Using 3              
repetitions of 10-fold cross-validation, we compared the behaviour of models that use between 10 and 350                
decision stumps as the ensemble learner.  
The model with the highest accuracy of 98.85% had a sensitivity of 98.02% and 100 estimators, while the                  
model with the highest sensitivity of 98.1824% had an accuracy of 98.85 % and 350 estimators. However,                 
the latter classifier took long to train, hence we selected the model with 200 estimators. This model had                  
similar performance scores (98.1818% sensitivity, 98.83% accuracy), and took less time to train. 
3.7.4 Changing the Ensemble Learner 
The default AdaBoost model uses 50 decision stumps as the ensemble. From Section 3.5, we know that                 
trees of depths 6 and 15 have the best performance. From Section 3.7.3, we also know that using 200                   
estimators leads to a well-performing AdaBoost model. Putting these together, we compared models with              
50 (the default) and 200 estimators, with each using trees of depths 1 (the default), 6, and 15. Each model                    
was trained using 10-fold cross-validation with 3 repetitions. The results can be seen in Figure 7. 

 
Figure 7: Performance Effect by Changing Number of Estimators and Ensemble Depth 

 
The best model had 200 estimators, each using decision trees of depth 6. The sensitivity of the model was                   
98.27%, with an accuracy of 99.17%. This is the best performing model out of all so far. 
 

3.8 Convolutional Neural Network 
The final model we created was a CNN. Unlike the previous models in Section 3, we don’t need to extract                    
features and feed them to the network. MRI scans (Figure 2) can be converted to NumPy arrays, which                  
are then used as the input of the network.  
The first CNN we created had 7 layers: 2 convolutional, 2 pooling, 2 dense, and 1 flattening layer. This                   
resulted in heavy overfitting.  
To overcome overfitting, we added dropout regularisation for our next model. The second model had 12                
layers: 3 convolutional, 3 pooling, 2 dropout, 3 dense, and 1 flattening layer. Using the ReLU activation                 



function, classification cross-entropy loss, and Adam optimisation, we achieved a sensitivity of 96.6%,             
and accuracy of 94.9% during training over 50 epochs.  
Cross-entropy calculates a score that summarises the average difference between predicted probabilities            
for class 1 (tumour present), after which the score is minimised. Adam optimisation computes adaptive               
learning rates for each parameter of the model, and also stores an exponentially decaying average of past                 
gradients [7].  

 
Figure 8: CNN Accuracy (left) and Loss (right) over 50 Epochs 

 
The final CNN we tried to create was with applying batch normalisation, however, we did not have the                  
computation power required to implement this. While running it for 100 epochs, its accuracy had only                
reached 70%, and was increasing very slowly, before crashing. However, we believe that theoretically,              
this should perform better than our best CNN.  
In each CNN, we started off with 64 filters in the first layer, followed by 128 filters in the second layer.                     
This took days to train, and gave only a slightly higher accuracy. We replaced this setup with 32 filters for                    
the first layer, and 64 filters for each subsequent layer. We were then able to train the model within a few                     
hours, with an accuracy difference of only 0.05%, hence we kept this configuration. 
 

3.9 Results 
The AdaBoost classifier with 200 estimators and decision trees of depth 6 (Section 3.7.4) was the best                 
model in terms of performance only (98.27% sensitivity, 99.17% accuracy). However, its drawbacks are              
that it requires feature extraction and processing, and a grid search for hyperparameter tuning. The CNN                
has a slightly lower sensitivity (96.6%) and accuracy (94.9%), but doesn’t need any feature engineering.               
However, it takes longer to develop as compared to AdaBoost. 

 

4 Statement of Contributions 
1. Samar Dikshit: Preprocessing; EDA; Tuning basic models; Adaptive Boosting 
2. Jerry Adams Franklin: EDA; Creating initial basic models; Convolutional neural net 
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